Curriculum Vitae
Google Scholar Citation
Web of Science ResearcherID
Among the most popular articles published in the last three years (2021-2024) at JMVA: #116 and #137
Among the most cited articles published in the last three years (2021-2024) at JCGS: #127
List of Publications (Updated: November 20th, 2024)
- 162. V.H. Lachos, S.D. Tomarchio, A. Punzo and S. Ingrassia (2024+). On Matrix-Variate Normal Distribution for Interval-Censored and Missing Data. Statistics and Computing (Under Review).
- 161. K.S. Conceição, M.G. Andrade, V.H. Lachos & N. Ravishanker (2024+). K-Modified Distributions for Count Data (Submitted).
- 160. Zhong, K., Zhang P., Castro, L.M., and Lachos, V.H. (2024+). Bayesian analysis of autoregressive linear mixed models for censored responses using the multivariate-t distribution. Japanese Journal of Statistics and Data Science (Under Review)
- 159. M.S. Oliveira, C. Galarza, M.O. Prates & V.H. Lachos (2024+). Influence Diagnostics for Heckman selection-t Models. Journal of Applied Statistics (Under review).
- 158. Benites, L.E., Bolfarine, H. and Lachos, V.H. (2024+). Finite mixture of regression models based on multivariate scale mixtures of skew-normal distributions. Computational Statistics (Under Review).
- 157. Wang, W-L., Lachos, V.H. Chen, Y-C. & Lin, T-I.(2024+). Flexible clustering via Gaussian parsimonious mixture models with censored and missing values. Test (Under Review).
- 156. Oliveira, D.C.R., Schumacher, F. & Lachos, V.H. (2024+). The use of the EM algorithm for regularization problems in high-dimensional linear mixed-effects models. Statistical Methods in Medical Research (Under review).
- 155. Liu, D., Oliveira, D.C.R., Castro, L.M. and Lachos, V.H. (2024+). Lasso regularization for censored regression and high dimensional predictors. Journal of Statistical Computation and Simulation (Under Review).
- 154. Jorge L. Bazán and V. H. Lachos (2024+). A new class of binary regression model for unbalanced data. Sankhya A (Under Review).
- 153. F.L. Schumacher, L.A. Matos & V.H. Lachos (2024+). skewlmm: An R Package for Fitting Skewed and Heavy-Tailed Linear Mixed Models. Journal of Statistical Software (Under Review)
- 152. Jerez-Lillo, N., Tapia, A., Lachos, V.H. and Ramos, P.L. (2024+). A New Semi-Parametric Power-Law Regression Model with Long-Term Survival, Change Point Detection and Regularization. Statistics in Medicine (Under Review)
- 151. Schumacher, F. L., Lachos, V.H. and Matos, L. A. (2024+). Linear Mixed Models for Complex Longitudinal Data with Applications in R. SpringerBriefs in Statistics Series. (Book, Under Review).
- 150. Zhong, K., Schumacher, F. Castro, M. & Lachos, V.H. (2024+). Bayesian analysis of censored linear mixed-effects models for heavy-tailed irregularly observed repeated measures. Statistics in Medicine (In Press).
- 149. Padilla*, J.L., Azevedo, C.L. and Lachos, V.H. (2024+). Parameter recovery for a skew multidimensional item response model: a comparison of MCMC algorithms and measurement of some effects of interest. Journal of Statistical Computation and Simulation (In Press)
- 148. Zhong*, K. Olivari*, R.C. , Garay, A.M. and Lachos, V.H. (2024+). Mixed-effects models for censored data with autoregressive errors using the multivariate Student’s t-distribution. The New England Journal of Statistics in Data Science (In Press).
- 147. Garay, A.W., Medina, F.L., de Freitas, S.T. and Lachos, V.H. (2024). Bayesian analysis of censored/missing regression models with autoregressive errors and symmetrical distributions. Statistical Papers, 65, 5649–5690.
- 146. Park*, J., Dey, D. and Lachos, V.H. (2024). Finite mixture of regression models for censored data based on the skew-t distribution. Computational Statistics, 39, 3695–3726.
- 145. Ordonez, J.A, Galarza, C. E. and Lachos, V.H. (2024). Spatial censored regression models in R: The censSpatial package. Preprint arXiv:2110.05570. SoftwareX, 27, 101762.
- 144. Schumacher, F. L., Lachos, V.H. Castro, L.M.C. and Matos, L. A. (2024). A censored time series analysis for responses on the unit interval: An application to acid rain modeling. Sankhya A, 86, 637–660.
- 143. Ordoñez*, A.C., Prates, M.O. Matos, L.A. and Lachos, V.H. (2024). Objective Bayesian analysis for spatial Student-t regression models. Journal of Spatial Science, 69, 61-79.
- 142. Ordoñez*, A.C., Prates, M.O. Bazan, J.L. and Lachos V.H. (2024). Penalized complexity priors for the skewness parameter of power links. The Canadian Journal of Statistics, 52(1), 98-117.
- 141. M.S. Oliveira, D.C.R. Oliveira & V.H. Lachos (2023). Influence diagnostics for skew-t censored linear regression models. Communications for Statistical Applications and Methods, 30(6), 605-629.
- 140. Benites*, L.S., Bolfarine, H. , Zeller, C.B. and Lachos, V.H. (2023). Regression modeling of censored data based on compound scale mixtures of normal distributions. Brazilian Journal of Probability and Statistics, 37(2), 282-312.
- 139. Lachos, V.H., Galea-Rojas, M. Prates, M. O. and Zeller, C.B. (2023). Likelihood inference-based for mixed-effects models using the generalized hyperbolic distribution. Stat – An ISI’s journal, 12:e602.
- 138. Gomes*, J. C., Aoki, R., Lachos, V. H., Paula, G. A. and Russo, C. M. (2023). Fast inference for robust nonlinear mixed-effects models. Journal of Applied Statistics, 50:7, 1568-1591.
- 137. Valeriano*, K.L., Galarza, C.E., Matos, L.A. and Lachos, V.H. (2023). Likelihood-based inference for multivariate skew-t censored regression models. Journal of Multivariate Analysis, 196, 105174.
- 136. da Paz*, R. Bazan, J.L., Lachos, V.H. and Dey, D. K. (2023). A finite mixture mixed proportion regression model for classification problems in Longitudinal voting data. Journal of Applied Statistics, 50,871-888.
- 135. de Alencar*, F.H., Matos, L.A. and Lachos, V.H. (2022). Finite mixture of censored linear mixed models for irregularly observed longitudinal data. Journal of Classification, 39 (3), 463 – 486.
- 134. Ferreira* , C.S., Bolfarine, H. and Lachos, V.H. (2022). Linear mixed models based on skew scale mixtures of normal distribution. Communications in Statistics – Simulation and Computation, 51, 7194–7214.
- 133. B. Mattos* , L.A. Matos and V.H. Lachos (2022). Likelihood-based inference for mixed-effects models with censored response using skew-normal distribution. Springer International Publishing. Edited volume in ‘Innovations in multivariate statistical modeling: navigating theoretical and multidisciplinary domains”. 1st ed. 2022
- 132. De Alencar* F.H., Galarza, C.E. Matos, L.A. and Lachos V.H. (2022). Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution. Advances and Data Analysis and Classification, 16, 521–557.
- 131. Mattos*, B. Matos, L.A., Castro, L.M. and Lachos, V.H. (2022). Extending multivariate-t semiparametric mixed models for longitudinal data with censored responses and heavy-tails. Statistics in Medicine, 41, 3696-3719.
- 130. Galarza* , C.E., Matos, L.A. and Lachos, V.H. (2022). An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses. Metron, 80, 231–253.
- 129. Ordoñez, J., Galarza, C. E. and Lachos, V. H. (2022). An R package for censored spatial data analysis. Medwave. 22(S1): eCI54. DOI: 10.5867/Medwave.2022.S1.CI54.
- 128. Lachos, V.H., Bazan, J.L., Castro, L.M. and Park, J. (2022). The skew-t censored regression model: parameter estimation via an EM-type algorithm. Communications for Statistical Applications and Methods, 29, 1-29.
- 127. C.E. Galarza* , L.A. Matos, D.K. Dey & V.H. Lachos (2022). On moments of folded and truncated multivariate extended skew-normal distributions. Journal of Computational and Graphical Statistics, 31, 455-465.
- 126. Galarza* , C.E. , Matos, L.A. and Lachos, V.H. (2022). Moments of the doubly truncated selection elliptical distributions with an emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189. 104944.
- 125. Mattos* , B., Matos, L.A. and Lachos, V.H. (2021). A Semiparametric Mixed-Effects Model for Censored Longitudinal Data. Statistical Methods in Medical Research, 30, 2582–2603.
- 124. Ruggeri, F., Bolfarine, H., Bazan, J.L., Arellano-Valle, R.B., Lachos, V.H. and de Castro, M. (2021). 2021 ISI Mahalanobis Award: a Tribute to Heleno Bolfarine. International Statistical Review, 89, 435–446.
- 123. Galarza* , C. Lachos, V.H. and Panpan, Z. (2021). Logistic quantile regression for bounded outcomes using a new family of heavy-tailed distributions. Sankhya B, 83, 325–349.
- 122. Galarza*, C. E., Lin, T. I. , Wang, W. L. and Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84, 825–850.
- 121. Galarza* , C.E., Bourguignon, M. and Lachos, V.H. (2021). A skew-t quantile regression modeling for censored and missing data, STAT, 10, 1-15 (e379).
- 120. R.C. Olivari* , A.M. Garay, V.H. Lachos and L.A. (2021). Autoregressive mixed-effects models for censored data. Journal of Biopharmaceutical Statistics, 31, 273-294.
- 119. Bandyopadhyay, D., Prates, M.O., Zhao*, X. and Lachos,V.H. (2021). Spatial skew-normal independent models for non-randomly missing clustered data. Statistics in Medicine, 40, 3085-3105.
- 118. Schumacher* , F.L. Dey, D.K. and Lachos, V.H. (2021). Approximate inferences for nonlinear mixed-effects models with scale mixtures of skew-normal distributions. Journal of Statistical Theory and Practice, 15, 60. (Part of a collection: Celebrating the Centenary of Professor C. R. Rao)
- 117. K.A.L. Valeriano* , L.A. Matos and V.H. Lachos (2021). Likelihood-based inference for spatio-temporal data with censored and missing responses. Environmetrics, 32, e2663.
- 116. V.H. Lachos, M.O. Prates and D.K. Dey (2021). Heckman selection-t model: parameter estimation via the EM-algorithm. Preprint arXiv:2006.08036. Journal of Multivariate Analysis, 184, 1-19.
- 115. Schumacher* , F. L., Lachos, V.H. and Matos, L.A. (2021). Scale mixture of skew-normal linear mixed models with within-subject serial dependence. Preprint arXiv:2002.01040. Statistics in Medicine, 40, 1790-1810.
- 114. Ye* , T. Lachos, V.H. , Wang X. and Dey,D.K. (2021). Comparisons of zero-augmented continuous regression models from a Bayesian perspective. Statistics in Medicine, 40, 1073-1100.
- 113. Nuñez* , M., Lachos, V.H. and Matos, L. (2021). Estimation and diagnostic for partially censored regression models based on heavy-tailed distributions. Statistics and its Interface, 14, 165 – 182.
- 112. Schumacher* , F. L., Ferreira, C.S., Prates, M.O., Lachos, A. and Lachos, V.H (2021). A robust nonlinear mixed-effects model for COVID-19 death data. Statistics and its Interface, 14, 49 – 57. Preprint arXiv:2007.00848
- 111. Lachos, V.H., Cabral, CRB. and Garay* A.W.M. (2020). Moments of truncated scale mixtures of skew-normal distributions. Brazilian Journal of Probability and Statistics, 34, 478-494.
- 110. Ferreira, C.S, Lachos, V.H. and Garay, A.M. (2020). Inference and diagnostics for heteroscedastic nonlinear regression models under skew scale mixtures of normal distributions. Journal of Applied Statistics, 47, 1690–1719.
- 109. Galarza*. C.E, Lachos, V.H., Castro, M.C. and Louzada, N.F. (2020). Quantile regression for nonlinear mixed effects models: A likelihood based perspective. Statistical Papers, 61, 1281-1307.
- 108. F. B. Goncalves, M. O. Prates and V. H. Lachos (2020). Robust Bayesian model selection for heavy-tailed linear regression models using mixtures. Brazilian Journal of Probability and Statistics, 34, 51-70.
- 107. Ramos*, P. L., Louzada, F., Dey, D. K. and Lachos, V. H. (2020). An Extended Poisson Family of Life Distribution: A Unified Approach in Competitive and Complementary Risks. Journal of Applied Statistics, 47, 306-322.
- 106. Lachos, V.H., Benites* , L.B. and Maehara* , CRB. (2019). Linear regression models using finite mixtures of skew heavy-tailed distributions. The Chilean Journal of Statistics, 10, 21-41.
- 105. Matos*, L.A., Castro, LM., V. H. Lachos and Lin, T-I (2019). Heavy-tailed longitudinal regression models for censored data: A robust parametric approach. TEST, 28, 844-878.
- 104. Wang, W. L., Castro, L. M. Lachos, V. H. and Lin, T. I. (2019). Model-based clustering of censored data via mixtures of factor analyzers. Computational Statistics and Data Analysis, 140, 104-121.
- 103. Luis M. Castro, Wan-Lun Wang, Victor H. Lachos, Cristian L. Bayes and Vanda Inacio (2019). Bayesian semiparametric modeling for HIV longitudinal data with censoring and skewness. Statistical Methods in Medical Research, 28, 1457–1476.
- 102. Zeller, C.B., Cabral, C.R.B. and Lachos, V.H. (2019). Finite mixture of regression models for censored data based on scale mixtures of normal distributions. Advances in Data Analysis and Classification, 13, 89–116.
- 101. Lachos, V. H., Prates, M.O., Cabral, C.R.B. and Dey, D. K. (2019). Robust regression modeling for censored data based on mixtures of student-t distributions. Computational Statistics, 34, 123–152.
- 100. Lachos, V. H., Matos*, L. A., Castro, L. M. and Chen, M-H. (2019). Flexible longitudinal linear mixed models for multiple censored responses data. Statistics in Medicine, 38, 1074-1102.
- 99. Lachos, V.H., Cabral, C.R.B. and Zeller, C.B (2018). “FINITE MIXTURE OF SKEWED DISTRIBUTIONS”. SpringerBriefs in Statistics Series.
- 98. Matos*, L.A., Lachos, V.H., Cabral, C.R.B. and L. M. Castro (2018). Multivariate measurement error models based on the t-distribution with censored responses. Statistics: A Journal of Theoretical and Applied Statistics, 52, 1395-1416.
- 97. Wan-Lun Wang, Lachos, V.H. and Tsung-I Lin (2018). Multivariate longitudinal data analysis with censored and intermittent missing responses. Statistics in Medicine, 37, 2822-2835.
- 96. Matos*, T. B., Lachos, V.H. and Garay, A.W.M. (2018). Likelihood based inference for censored linear regression models with scale mixtures of skew-normal distributions. Journal of Applied Statistics, 45, 2039-2066.
- 95. Schumacher*, F. L., Lachos, V.H., Vilca-Labra, F.E. and Castro, L.M. (2018). Influence diagnostics for censored regression models with auto-regressive errors. Australian & New Zealand Journal of Statistics, 60, 209-229.
- 94. Padilla*, J.L., Azevedo, C.L. and Lachos, V.H. (2018). Multidimensional multiple group IRT models with skew normal latent trait distributions. Journal of Multivariate Analysis, 167, 250-268.
- 93. Wan-Lun Wang, Tsung-I Lin and Lachos, V.H. (2018). Extending multivariate-t linear mixed models for multiple longitudinal data with censored responses and heavy tails. Statistical Methods in Medical Research, 27, 48-64.
- 92. Ordoñez*, J. A., Lachos, V.H., Cabral, C.R.B, and Bandyopadhyay, D. (2018). Geo-statistical estimation and prediction for censored responses. Spatial Statistics, 23, 109-123.
- 91. Schumacher*, F. L., Lachos, V.H. and Dey, D.K. (2017). Censored regression models with autoregressive errors: A likelihood-based perspective. Canadian Journal of Statistics, 45, 375–392.
- 90. Lachos, V.H., Matos*, L.A., Barbosa*. T.S, Dey, DK. and Garay*, A.M. (2017). Influence diagnostics in spatial models with censored response. Environmetrics, 28, 1-21.
- 89. Lachos, V. H., Moreno*, E. L. Cabral, C.R. and Kun, C.(2017). Finite mixture modeling of censored data using the multivariate Student-t distribution. Journal of Multivariate Analysis, 159, 151-167.
- 88. V. H. Lachos, Dey, D., Cancho, V.G. and Louzada, N. (2017) . Scale mixtures log-Birnbaum-S8unders regression models with censored data: a Bayesian approach. Journal of Statistical Computation and Simulation, 87, 2002-2022.
- 87. Galarza*, C.M., V. H. Lachos, Cabral, CRB. and Castro (2017). Robust Quantile Regression using a Generalized Class of Skewed Distributions. STAT, 113-130.
- 86. Galvis*, D. M., Bandyopadhyay, D and Lachos, V. H. (2017). Augmented mixed models for clustered proportion data. Statistical Methods in Medical Research, 26, 880–897.
- 85. Garay*, A. W, Castro, L.M., Leskow, L. and Lachos, V. H. (2017). Censored linear regression models for irregularly observed longitudinal data using the multivariate-t distribution . Statistical Methods in Medical Research, 26, 542–566.
- 84. Massuia*, M.B., Garay*, AMG and V. H. Lachos and Cabral, C. R. (2017). Bayesian analysis of censored linear regression models with scale mixtures of skew-normal distributions. Statistics and its Interface, 10, 425-439.
- 83. Galarza*, C.M., Bandyopadhyay, D. and V. H. Lachos (2017). Quantile regression for linear mixed models: A stochastic approximation EM approach. Statistics and its Interface, 10, 471-482.
- 82. Garay*, A. W, Lachos, V. H., Bolfarine, H and Cabral, C.R. (2017). Linear censored regression models with scale mixtures of normal distributions . Statistical Papers, 58, 247–278.
- 81. Ferreira C.S. and Lachos, V. H.(2016). Nonlinear regression models under skew scale mixtures of normal distributions. Statistical Methodology, 33, 131–146.
- 80. Matos*, L. A, Lachos, V. H.and Castro, L.M. (2016). Censored mixed-effects models for irregularly observed repeated measures with applications to HIV viral loads . TEST, 25, 627–653
- 79. Gonzalez*, J. A. C., Lachos, V. H., Castro, L.M. and Patriota, A. (2016). A Confidence Set Analysis for Observed Samples: A Fuzzy Set Approach . Entropy, 18, 211-220.
- 78. Blas*, B.G. Lachos, V. H. and Bolfarine, H. (2016). Heavy tailed calibration model with Berkson measurement errors for replicated data . Chemometrics and Intelligent Laboratory Systems, 156, 21-35
- 77. Ferreira*, C. S., Lachos, V. H. and Bolfarine, H. (2016). Multivariate skew scale mixtures of normal distributions. Advances in Statistical Analysis, 100,421-441.
- 76. Zeller*, C. B, Lachos, V. H.and Cabral, C.R. (2016). Robust mixture regression modelling based on scale mixtures of skew-normal distributions . TEST, 25, 375-396.
- 75. Garay*, A. W, Lachos, V. H.and Lin, Tsung-I (2016). Nonlinear censored regression models with scale mixtures of normal distributions . Statistics and its Interface,9, 281 — 293.
- 74. Galarza*, C.M. and V. H. Lachos (2015). Likelihood based inference for quantile regression nonlinear mixed effects models. Estadistica, Inter-American Statistical Institute, 67, 33-74.
- 73. Garay*, A. W, Lachos, V. H., Bolfarine, H and Cabral, C.R. (2015). Bayesian analysis of censored linear regression models with scale mixtures of normal distributions. Journal of Applied Statistics, 42, 2694-2714.
- 72. Matos*, L. A., Bandyopadhyay, D., Castro, L. M. and Lachos, V. H. (2015). Influence diagnostics in mixed-effects models with censored data using the multivariate-t distribution. Journal of Multivariate Analysis, 141, 10-117.
- 71. Garay*, A. M., Lachos, V. H, and Bolfarine, H. (2015). Bayesian zero-inflated negative binomial regression models: estimation and case influence diagnostics. Journal of Applied Statistics, 42, 1148-1165.
- 70. Motta, M. R. , Galvis*, D. M., Lachos, V. H, and others (2015). A mixed-effect model for positive responses augmented by zeros . Statistics in Medicine, 34, 1761-1778.
- 69. Bandyopadhyay, D. Castro, L.M., Lachos, V. H. and Pinheiro, H. P. (2015). Joint nonlinear mixed-effects models and diagnostics for censored HIV viral loads with CD4 measurement error. Journal of Agricultural, Biological, and Environmental Statistics, 20, 121-139.
- 68. Costa*, D. R., Castro, L. M., Prates, M. and Lachos, V. H. (2015). Likelihood-based inference for Tobit confirmatory factor analysis using the multivariate t-distribution. Statistics and Computing, 25, 1163-1183.
- 67. Lachos*, V. H., Azevedo, C. L. N, Abanto-Valle, C. A. and Chen, M-H (2015). Quantile regression for censored mixed-effects models with applications to HIV studies. Statistics and its Interface, 8, 203-215.
- 66 . Massuia*, M. B., Cabral, M. O, Matos, L.A. and Lachos, V.H.(2015). Influence diagnostics for Student-t censored linear regression models . Statistics- A Journal of Theoretical and Applied Statistics, 49, 1074-1094.
- 65. Castro, L. M., Galvis*, D. M. and Lachos, V. H. (2015). Bayesian semiparametric linear mixed-effects models with normal/independent distributions. Chapman & Hall/CRC Press. Edited volume in -Current Trends in Bayesian Methodology with Applications-. Textbook – 516 Pages.
- 64. Abanto-Valle, C. A., Lachos, V. H, and Dey, D.(2015). Bayesian estimation of a skew-t stochastic volatility model . Methodology & Computing in Applied Probability, 17, 721-738.
- 63. Lachos*, V. H, and Labra, F. V. (2014). Multivariate skew-normal/independent distributions: properties and inference. Pro Mathematica, 28, 11–53.
- 62. Costa*, D. R, Lachos, V. H. Bazan, J. L. and Azevedo, C. L. N (2014). Estimation methods for multivariate Tobit confirmatory factor analysis. Computational Statistics and Data Analysis, 79, 248-260.
- 61. Galvis*, D. M, Bandyopadhyay, D. and Lachos, V. H. (2014). Augmented mixed beta regression models for periodontal proportion data. Statistics in Medicine, 33, 3759-3771.
- 60. Garay*, A. M., Lachos, V. H., Vilca, L. F. and Ortega, E. M. (2014). Statistical diagnostics for nonlinear regression models based on scale mixtures of skew-normal distributions. Journal of Statistical Computation and Simulation, 84, 1761-1778.
- 59. Costa*, D. R, Lachos, V. H. and Prates, M.O. (2014). Generalized linear mixed models for correlated binary data with T-link . Statistics and Computing, 24,1111-1123.
- 58. Zeller*, C. B., Lachos, V. H., Vilca, L. F. (2014). On estimation and influence diagnostics for the Grubbs’ model with asymmetric heavy-tailed distributions . Statistical Papers, 55, 671-690.
- 57. Ferreira*, C. S, Lachos, V. H., and Bolfarine, H. (2014). Inference and diagnostics in skew scale mixtures of normal regression models . Journal of Statistical Computation and Simulation, 85, 517-537.
- 56. Cabral, C. R., Lachos, V. H, and Zeller*, C.B.(2014). Multivariate measurement error models using finite mixtures of skew-student t distributions . Journal of Multivariate Analysis, 124, 179-198.
- 55. Castro, L. M., Lachos, V. H, Ferreira, G. and Arellano-Valle, R. (2014). Partially linear censored regression models using heavy-tailed distributions: A Bayesian approach . Statistical Methodology, 18, 14-31.
- 54. Ferreira, G., Castro, L. M., Lachos, V. H, and Dias, R. (2013). Bayesian modeling of autoregressive partial linear models with scale mixture of normal errors. Journal of Applied Statistics, 40, 1796-1816.
- 53. Prates*, M. O., Cabral, M. O, and Lachos, V.H.(2013). Fitting finite mixture of scale mixture of skew-normal distributions . Journal of Statistical Software, 54, 1-20.
- 52. Lachos, V. H. Castro, L. M. and Dey, D.K. (2013). Bayesian inference in nonlinear mixed-effects models using normal independent distributions . Computational Statistics and Data Analysis, 64, 237-252.
- 51. Matos*, L. A., Lachos, V. H,, Balakrishnan, N. and Vilca-Labra, F.(2013). Influence diagnostics in linear and nonlinear mixed-effects models with censored data . Computational Statistics and Data Analysis, 57, 450-464.
- 50. Matos*, L. A., Prates*, M. O., Chen, M-H. and Lachos, V. H. (2013). Likelihood based inference for linear and nonlinear mixed-effects models with censored response using the multivariate-t distribution . Statistica Sinica, 23, 1299-1322.
- 49. Blás*, B.G. Lachos, V. H. and Bolfarine, H. (2013). Statistical analysis of controlled calibration model with replicates . Journal of Statistical Computation and Simulation, 83, 941-961.
- 48. Abanto-Valle, C. A., Lachos, V.H. and Ghosh, P. (2012). A Bayesian term structure modeling using heavy-tailed distributions. Applied Stochastic Models in Business and Industry, 28, 430-447.
- 47. Prates*, M. O., Dey, D. K, and Lachos, V.H. (2012). A dengue fever study in the state of Rio de Janeiro with the use of generalized skew-normal/independent spatial fields. The Chilean Journal of Statistics, 3, 33-45.
- 46. Zeller*, C. B., Carvalho*, R. R, and Lachos, V. H. (2012). On diagnostics for multivariate measurement error model with asymmetric heavy-tailed distributions. Statistical Papers, 53, 665-683.
- 45. Abanto-Valle, C. A., Migon, H. S. and Lachos, V. H.(2012). Stochastic volatility in mean models with heavy-tailed distributions. Brazilian Journal of Probability and Statistics, 26, 402-422.
- 44. Lachos, V.H. , Bandyopadhyay, D., Castro, L.M.C and Dey, D. K.(2012). Skew-normal/independent linear mixed models for censored responses with applications to HIV viral loads. Biometrical Journal, 405-425, 2012.
- 43. Lachos, V. H., Garay*, A. M. , Ortega, E. M. and Vilca, L. F. (2012). Estimation and diagnostics for heteroscedastic nonlinear regression models based on scale mixtures of skew-normal distributions. Journal of Statistical Planning and Inference, 142, 2149-2165.
- 42. Barbosa-Cabral, C. R., Lachos, V. H. and Madruga, R. M. (2012). Bayesian skew-normal independent linear mixed models with heterogeneity in the random-effects population. Journal of Statistical Planning and Inference, 212, 181-200.
- 41. Cabral, C. R., Lachos, V. H, and Prates*, M.O (2012). Robust multivariate mixture modelling using scale mixtures of skew-normal distributions. Computational Statistics and Data Analysis, 56, 226-246.
- 40. Lachos, V. H., Cabral, C. R. and Abanto-Valle, C. A. (2012). A noniterative sampling Bayesian method for linear mixed models with normal independent distributions. Journal of Applied Statistics, 39, 531-549.
- 39. Lachos, V.H., Bandyopadhyay D. and Dey D. K. (2011) Linear and non-linear mixed-effects models for censored HIV viral loads using normal/independent distributions. Biometrics, 55, 1304-1318.
- 38. Lachos, V. H., Bandyopadhyay, D. and A. M. Garay* (2011). Heteroscedastic nonlinear regression models based on scale mixtures of skew normal distributions. Statistics and Probability Letter, 81, 1208-1217.
- 37. Garay*, A. M., Ortega, E. M., and Lachos, V. H. (2011). On estimation and influence diagnostics for zero-inflated negative binomial regression models. Computational Statistics and Data Analysis, 55, 1304-1318
- 36. Zeller*, C. B., Lachos, V. H, and Labra, F. (2011). Local influence analysis for regression models with skew-normal independent distributions. Journal of Applied Statistics, 38, 343 – 368.
- 35. Abanto-Valle, C. A., Migon, H. and Lachos, V.H. (2011). Bayesian analysis of heavy-tailed stochastic volatility in mean model using scale mixtures of normal distributions. Journal of Statistical Planning and Inference, 141, 1875-1887.
- 34. Ferreira*, C. S., Lachos, V. H. and Bolfarine, H. (2011). Skew scale mixtures of normal distributions: properties and estimation. Statistical Methodology, 8, 154-171.
- 33. Lachos, V. H., Abanto-Valle, C. A. and Angolini*, T (2011). On estimation and local influence analysis for measurement errors models under heavy-tailed distributions . Statistical Papers, 52, 567-590.
- 32. Garay*, A. M., Lachos, V. H, and Abanto-Valle, C.A. (2011). Nonlinear regression models based on scale mixtures of skew-normal distributions. Journal of the Korean Statistical Society, 40, 115-124.
- 31. Lachos, V.H., Filidor, V.L., Garibay, V.C. and Aoky R. (2011). Skew-normal distribution in multivariate null intercept measurement error models. Brazilian Journal of Probability and Statistics, 25, 145-170.
- 30. Lachos, V. H., Ghosh, P. and Arellano-Valle R. B. (2010). Likelihood based inference for skew-normal/independent linear mixed model. Statistica Sinica, 20, 303-322.
- 29. Lachos, V.H., Bolfarine H., Vilca, L.F. and Ghosh, P. (2010). Robust multivariate measurement error models with scale mixtures of skew-normal distributions. Statistics (A Journal of Theoretical and Applied Statistics), 44, 541-556.
- 28. Abanto-Valle, C. A., Bandyopadhyay, D, Lachos, V. H. (2010). Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions . Computational Statistics and Data Analysis, 54, 2883-2898.
- 27. Bandyopadhyay, D, Lachos, V. H. Abanto-Valle, C. A. (2010). Bayesian inference for bivariate skew-normal/independent linear mixed models with application to periodontal disease. Statistics in Medicine, 29, 2643-2655.
- 26. Zeller*, C. B., Lachos, V. H., Vilca, L. F. and Balakrishnan, N. (2010). Influence analyses of skew-normal/independent linear mixed models. Computational Statistics and Data Analysis, 54, 1266-1280.
- 25. Basso*, R., Lachos, V. H, and Cabral, C.R.B (2010). Robust mixture modelling using scale mixtures of skew-normal distributions. Computational Statistics and Data Analysis, 54, 2926-2941.
- 24. Cancho, V. G., Dey, K. D., Lachos, V. H. and Andrade, M. (2010). Bayesian nonlinear regression models with scale mixtures of skew normal distributions: Estimation and case influence diagnostics. Computational Statistics and Data Analysis, 55, 588-602.
- 23. Garibay, V. Aoki, R. and Lachos, V.H. (2010). Bayesian analysis for skew-t multivariate null intercept measurement error models. Statistical Papers, 51,531-545.
- 22. Garibay, V. Ortega, E. and Lachos, V.H.(2010). Skew-normal comparative calibration models. Journal of Statistical Theory and Applications, 9, 143-168.
- 21. Lachos, V. H., Garibay, V. and Ortega, E. (2010). A nonlinear model with skew-normal errors. Statistical Papers, 51, 547-558.
- 20. Lachos, V.H., Bolfarine H. and Montenegro*, L.C. (2010). Inference for a Skew Extension of the Grubbs Model. Statistical Papers, 51, 701-715.
- 19. Montenegro*, L.C, Lachos, V.H. and Bolfarine H. (2009). Local influence analysis of skew-normal linear mixed models. Communication in Statistics- Theory and Methods, 38, 484-496.
- 18. Montenegro*, L.C., Bolfarine, H. and Lachos, V.H. (2009). Influence diagnostics for a skew extension of the Grubbs model. Communication in Statistics- Simulation and Computation, 38, 667-681.
- 17. Lachos, V. H., Dey, K. D. and Cancho, V. G. (2009). Robust linear mixed models with skew-normal independent distributions from a Bayesian perspective. Journal of Statistical Planning and Inference, 139, 4098-4110.
- 16. Ghosh, P., Bayes*, C. R. and Lachos, V. H. (2009). A robust Bayesian approach to null intercept measurement error model with application to dental data. Computational Statistics and Data Analysis, 53, 1066-1079.
- 15. Lachos, V. H., Vilca, F. L,, Garibay, V. and Aoki, R. (2009). Robust multivariate measurement error Model with skew-normal/independent distributions and Bayesian MCMC implementation. Statistical Methodology, 6, 527-541
- 14. Ortega, E. M., Garibay, V., and Lachos, V. H. (2009). A generalized log-gamma mixture model with long-term survivors: sensitivity analysis. Sankhya – Indian Statistical Institute, Series B, 71, 1-29.
- 13. Lachos, V.H., Bolfarine H. e Montenegro*, L.C (2008). Inference and assessment of local influence in skew-normal null intercept measurement error models. Journal of Statistical Computation and Simulation, 78, 395-419.
- 12. Ortega, E., Garibay, V. and Lachos, V.H. (2008). Influence diagnostics in the Weibull mixture model with covariates. Statistics and Operations Research Transactions (SORT), 115-140, 2008.
- 11. Aoki, R. Garibay, V. and Lachos, V.H. (2008). Bayesian analysis for a skew extension of the multivariate null intercept measurement error model. Journal of Applied Statistics, 35, 1239-1251.
- 10. Lachos, V. H. (2008). Scale mixtures of skew-normal distribution with applications in regression models. Estadistica (Inter-American Statistical Institute), 60, 1-28.
- 9. Lachos, V.H., Bolfarine H. and Montenegro*, L.C. (2007). Influence diagnostics for skew-normal linear mixed models. Sankhya – Indian Statistical Institute, 69, 648-670.
- 8. Lachos, V.H., Vilca, L.F. and Galea, M. (2007). Influence diagnostics for Grubbs’s model. Statistical Papers, 48, 419-436.
- 7. Lachos, V.H. and Bolfarine H. (2007). Skew-probit measurement error models. Statistical Methodology, 4, 1-12.
- 6. Lachos, V.H., Bolfarine H., Arellano-Valle, R.B. and Montenegro*, L.C. (2007). Likelihood based inference for multivariate skew-normal regression models. Communication in Statistics: Theory and methods (Special Issue in skew distributions), 36, 1769-1786.
- 5. Arellano-Valle, R.B., Bolfarine, H. and Lachos, V.H. (2007). Bayesian inference for skew-normal linear mixed models. Journal of Applied Statistics, 34, 663-682.
- 4. Lachos, V.H. and Bolfarine H. (2006). Skew binary regression with measurement errors. Statistics (A Journal of Theoretical and Applied Statistics), 40, 485-494.
- 3. Arellano-Valle, R.B., Ozan, S., Bolfarine, H. and Lachos, V.H. (2005). Skew-normal measurement error models. Journal of Multivariate Analysis, 96, 93-116.
- 2. Arellano-Valle, R.B., Bolfarine, H. and Lachos, V.H. (2005). Skew-normal linear mixed models. Journal of Data Science, 4, 415-438.
- 1. Lachos, V.H. (2004). Modelos Lineares Mistos Assimétricos. Ph.D. Thesis, Inst. of Mathematics and Statistics, University of São Paulo, Brazil, 160 p. (Wednesday, 10/27/2004).
Packages for R
- mixsmsn: Fitting finite mixture of scale mixture of skew-normal distributions (2010)
- tlmec: Linear Student-t Mixed-Effects Models with Censored Data (2011)
- nlsmsn: Fitting univariate non-linear scale mixture of skew-normal regression models. (2012)
- CensRegMod: Fitting Normal and Student-t censored regression models. (2012)
- SMNCensReg: Fitting univariate censored regression model under the scale mixture of normal distributions. (2013)
- ALDqr: Quantile Regression Using Asymmetric Laplace Distribution. (2013)
- BayesCR: Bayesian analysis of censored linear regression models with scale mixtures of normal (SMN) distributions (2013)
- qrLMM: Quantile Regression for Linear Mixed-Effects Models (2015)
- ald: The Asymmetric Laplace Distribution (2015)
- CensMixReg: Censored Linear Mixture Regression Models (2015)
- lqr: Robust Linear Quantile Regression (2016)
- FMsmsnReg: Regression Models with Finite Mixtures of Skew Heavy-Tailed Errors (2016)
- ARCensReg: Fitting Univariate Censored Linear Regression Model with Autoregressive Errors (2016)
- CensSpatial: Censored Spatial Models (2016)
- MomTrunc: Moments of Folded and Doubly Truncated Multivariate Distributions (2018)
- PartCensReg: Partially Censored Regression Models Based on Heavy-Tailed Distributions (2018)
- StempCens: Spatio-Temporal Estimation and Prediction for Censored/Missing Responses (2019)
- CensMFM: Finite Mixture of Multivariate Censored/Missing Data (2019)
- skewlmm: Scale Mixture of Skew-Normal Linear Mixed Models (2020)
- OBASpatial: Objective Bayesian Analysis for Spatial Regression Models (2020)
Submitted/in Progress
- R. Retnam, S. Srivastava, D. Bandyopadhyay, and V.H. Lachos (2024). A divide-and-conquer EM algorithm for large non-Gaussian longitudinal data with irregular follow-ups (In Progress).
- Fusheng Yang and V.H. Lachos (2024). Comparison of Zero-Inflated and Hurdle INAR(1) Processes for Modeling Count Data (In progress).
- Galarza, C. and Lachos, V.H. (2024). Finite mixture modeling of censored and missing data using the multivariate skew-t distribution (In progress).
- D.C.R. Oliveira, D. Liu & V.H. Lachos (2024). The use of the EM algorithm for regularization problems in high-dimensional censored linear mixed-effects models (In progress).
- Fabio, L., Carrasco, J., Lachos, V.H. and Chen, M-H (2024). Likelihood-based inference for joint modeling of correlated count and binary outcomes with extra variability and zeros (In progress).
- Diniz, C. and Lachos, V.H. (2024). Finite mixtures of matrix variate generalized asymmetric Laplace distribution for three-way data. (In progress).
- Lim, H., Lachos, E.V. and Lachos V.H. (2024). Bayesian analysis of flexible Heckman-selection models using Hamiltonian Monte Carlo. (In progress)
- Brisilda Nbreka, D. Dey and Lachos, V.H. (2024). Quantifying homophily through skewed link functions in Bayesian network models: Estimating peer influence ( Submitted).
- Brisilda Nbreka, D. Dey and Lachos, V.H. (2024). Bayesian Estimation of Contagion Effect: An Application of Friendship Networks and Alcohol Behavior (Submitted).
- Lachos, V.H., José Alejandro Ordoñez, Heeju Lim and Punzo, A. (2024). Heckman selection – contaminated normal model (Submitted).
- Gil, Yessenia A., Garay, A.W. and Lachos, V.H. (2024). Likelihood-based inference for interval censored regression models under heavy-tailed distributions (Submitted).
- Carrasco, J.M., Castillo, L.F. , Dey, D. and Lachos, V.H. (2024). Variable selection in high-dimensional generalized linear mixed models for correlated binary data (Submitted).